Программа «Интерактивная геометрия (Kig)»

на уроках элективного курса

«Знаменитые теоремы планиметрии».

Первое знакомство.

В процессе изучения математики мы доказываем теоремы, которые уже кто-то сформулировал. А как самому догадаться до некоторого нетривиальной теоремы? После некоторых размышлений в голове человека рождается гипотеза, и прежде чем ее доказывать, желательно ее проверить на различных частных случаях. Когда речь идет о некотором геометрическом факте, то необходимо посмотреть, остается ли он верен, если мы начинаем изменять геометрическую конфигурацию.

В правильном треугольнике все высоты пресекаются в одной точке — очевидный факт. При изменении же вершин треугольника по отношению друг к другу его высоты будут как-то перемещаться. Будут ли они все пересекаться в одной точке? Поставить эксперимент, позволяющий подтвердить или опровергнуть данное

предположение, позволяет нам программа «Интерактивная геометрия» Kig.

Ярлык для запуска этой программы
Вы можете найти в меню «Образование»
«Математика»

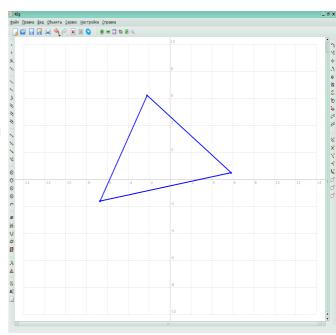
Запустив программу, мы увидим основное окно программы, где проводятся геометрические построения, панель инструментов и основную панель для работы с программой — панель объектов.

Посмотрите интерактивную справку по данной программе. Она хоть и

небольшая, но содержит все необходимые первоначальные сведения.

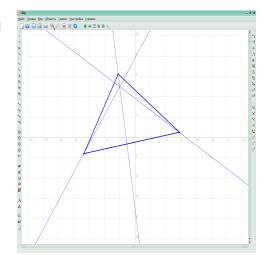
Давайте теперь вернемся к задаче о точке пересечения высот. Используя Kig, мы можем создать данную геометрическую конфигурацию.

 Рисуем контур треугольника, состоящий из трех отрезков.
 («Объекты» — «Векторы и отрезки» — «Отрезки», или же щелкнуть правой



кнопкой мыши, вызвав контекстное меню, а затем выбрать «Запуск» — «Отрезок». Проще же всего выбрать «Отрезок» в панели Инструментов, располагаемой в левой части экрана).

- 2. При помощи инструмента Перпендикуляр строим три высоты треугольника.
- 3. Теперь мы можем преобразовывать треугольник, «взявшись» мышкой за любую вершину и передвигая ее по экрану. Видим, что три высоты все равно пересекаются в одной точке.

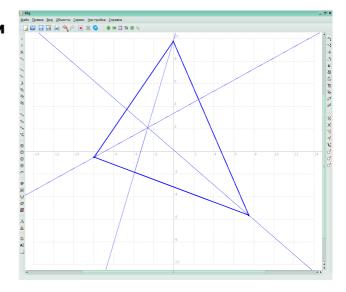


Файлы с интерактивными чертежами к условиям теорем и их доказательствам находятся в папке Теоремы.

Замечание. Управлять масштабом в программе Kig можно, используя комбинации клавиш:

Ctrl и + для увеличения

Ctrl и — для уменьшения



Построение урока.

Используя программу «Интерактивная геометрия (Kig)» на уроке, мы имеем возможность создавать различные чертежи к задачам, строить гипотезы и проверять их выполнение при различных преобразованиях объектов.

Прежде всего, Kig — программа для иллюстрации. Сама она не может доказывать никаких теорем.

При использовании ее на уроках математики желательно иметь

- интерактивную доску (или экран с проектором)
- ✓ обычную доску, располагающуюся рядом.

На интерактивной доске идет показ модели, а все необходимые записи делаются на вспомогательной доске.

Новые макротипы.

Несмотря на достаточно большое количество различных инструментов для построения, имеется необходимость быстро создавать наиболее типичные объекты.

Например, часто используется окружность, вписанная в треугольник. Такого объекта в Kig нет. Зато есть возможность создания макротипов. Создав однажды некоторый объект, мы может автоматизировать его построение в дальнейшем.

Запись и установка уже созданных макротипов проводится через меню «Сервис».

Мною написаны следующие макротипы:

- Медианы в треугольнике
- Высоты в треугольнике
- Биссектрисы в треугольнике
- Вписанная окружность
- Вневписанная окружность
- Значок перпендикуляра
- Значки равенства отрезков
- Значки равенства углов
- Построение трисектрисы угла
- Поворот точки относительно данной точки
- Поворот треугольника относительно данной точки

При построении макротипов есть возможность использовать язык Python.

Созданные макротипы Вы можете в папке Макротипы.

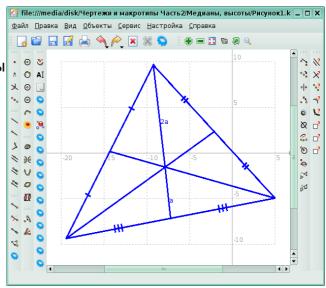
Устанавливаются макротипы через меню Сервис. Однако, интерактивные чертежи будут воспроизводится и без установленных макротипов.

Дальнейшая часть работы посвящена применению Интерактивной геометрии при доказательстве известных теорем планиметрии.

Я привожу условия теоремы, геометрический чертеж, выполненной в Kig и доказательства некоторых теорем.

Теорема о медианах треугольника.

<u>Теорема</u>. Медианы треугольника пересекаются в одной точке, и делятся этой точкой в отношении 2 к 1, считая от вершины треугольника.



Доказательство:

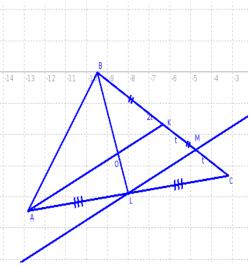
Проведем в треугольнике ABC медианы AK и BL. Проведем через точку L прямую, параллельную медиане AK. Обозначим через М точку пересечения этой прямой со стороной BC.

Поскольку AL = LC, то по теореме Фалеса CM = MK = t. Поскольку K — середина стороны BC, то BK = 2t.

По теореме о пропорциональных отрезках BO: OL = BK: KM = 2:1.

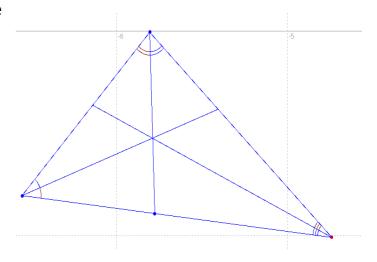
Итак, медиана АК делит медиану BL в отношении 2: 1, считая от вершины. Аналогично можно доказать, что медиана, проведенная из вершины C, также делит медиану BL в отношении 2: 1. Но отрезок BL можно поделить в отношении 2: 1, считая от В только одним способом, значит медиана, проведенная из Вершины C треугольника, также проходит через точку O.

При этом было показано что точка О делит медиану BL в отношении 2 : 1. Доказательство, проведенное для медианы BL, можно провести и для других медиан, поэтому точка О делит каждую медиану в отношении 2 : 1, считая от вершины.



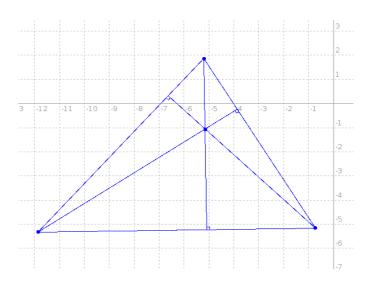
Теорема о биссектрисах треугольника

<u>Теорема</u>. Биссектрисы в треугольнике пересекаются в одной точке.



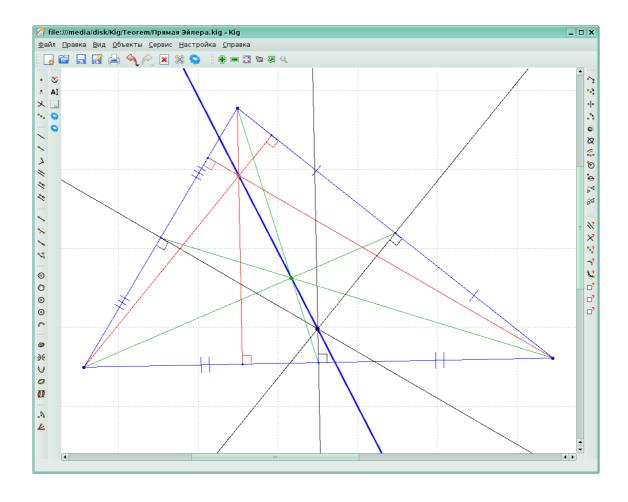
Теорема о высотах треугольника

<u>Теорема</u>. Высоты в треугольнике пересекаются в одной точке.



Прямая Эйлера

<u>Теорема</u>. В произвольном треугольнике точка пересечения медиан, точка пересечения высот (или их продолжений) и точка пересечения серединных перпендикуляров к сторонам треугольника лежат на одной прямой (*прямой Эйлера*).



Точка Микеля

<u>Теорема</u>. Четыре прямые образуют четыре треугольника. Описанные окружности

этих треугольников имеют общую точку (точка Микеля).

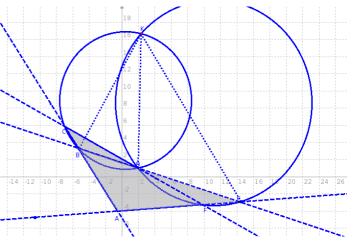
Доказательство:

Опишем вокруг треугольников ВСD и DEF окружности. Пусть К — вторая точка их пересечения. Необходимо доказать, что окружности, описанные около треугольников АСF и АВЕ, также проходят через точку К.

Докажем это, например, для окружности, описанной около треугольника ABE (для другой окружности рассуждения проводятся аналогично). Для этого необходимо показать, что сумма углов ВКЕ и ВАЕ равна 180 градусам.

Угол DKB равен углу DCB, поскольку эти углы в окружности опираются на одну хорду BD.

Четырехугольник EFDK является вписанным в окружность, значит сумма его противолежащих углов DKE и DFE равна 180 градусам. Сумма углов DFE и DFA также равна 180 градусам (смежные углы), значит угол DKE равен углу DFA.



Поучили, что угол ВКЕ равен сумме углов АСF и CFA. А значит, сумма нужных нам углов ВКЕ и ВАЕ равна сумме углов треугольника АСF, то есть 180 градусам.

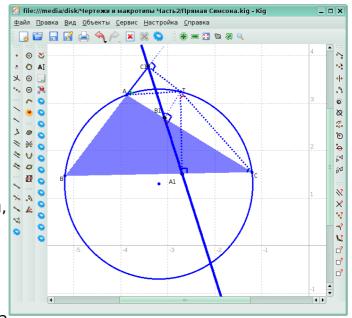
Теорема доказана.

Прямая Симсона

<u>Теорема</u>. Основания перпендикуляров, опущенных из заданной точки описанной окружности на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

Доказательство:

Для доказательства того, что точки A_1 , B_1 , и C_1 лежат на одной прямой, достаточно доказать, что сумма углов C_1B_1T и CB_1A_1 равна 90 градусов. Сумма углов TC_1A и TB_1A равна 180 градусам, значит вокруг четырехугольника



 TC_1AB_1 можно описать окружность. Отсюда следует, что угол TB_1C_1 равен углу TAC_1 . Четырехугольник ATCB вписан в окружность, значит сумма углов BCT и BAT равна 180 градусам. Сумма углов BAT и TAC_1 также равна 180 градусам. Значит, угол C_1AT равен углу BCT.

Два угла TB_1C и TA_1C равны по 90 градусам, и поскольку эти углы опираются на отрезок TC , то вокруг четырех точек TCA_1B_1 можно описать окружность. Отсюда следует, что угол CB_1A_1 равен углу CTA_1 .

Итак, нами получено, что сумма углов C_1B_1T и CB_1A_1 равна сумме углов TCA_1 и CTA_1 , которая равна 90 градусам.

Теорема доказана.

Теорема Наполеона

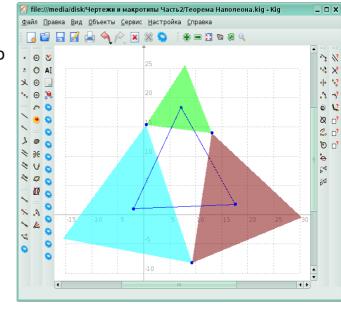
<u>Теорема</u>. Центры правильных треугольников, построенных во внешнюю сторону на сторонах данного произвольного треугольника, являются вершинами правильного треугольника.

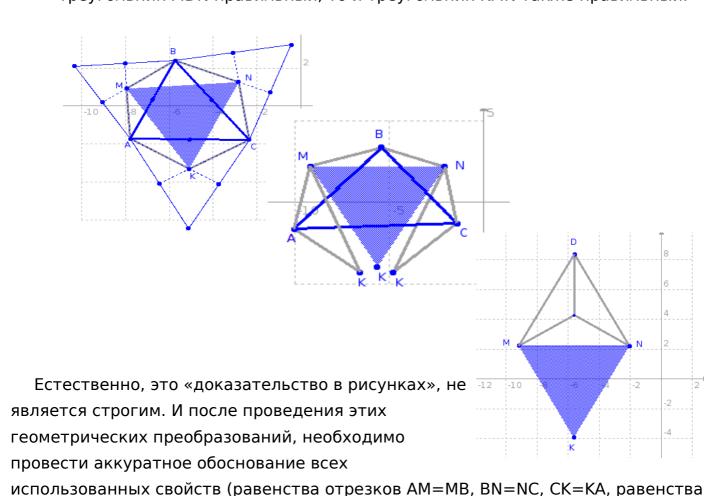
Доказательство:

Используя программу Kig можно «провести» доказательство «в картинках»:

углов AMB, BNC, CKA 120 градусам и т.д.)

- 1. Отсечем лишнее, оставив шестиугольник AMBNCK.
- 2. Повернем треугольники КАМ и КСN вокруг точки точки В так, чтобы точки А и С совпали с точкой В.
- 3. В получившемся рисунке треугольники MDN и MKN равны, а поскольку треугольник MDN правильный, то и треугольник KMN также правильный.

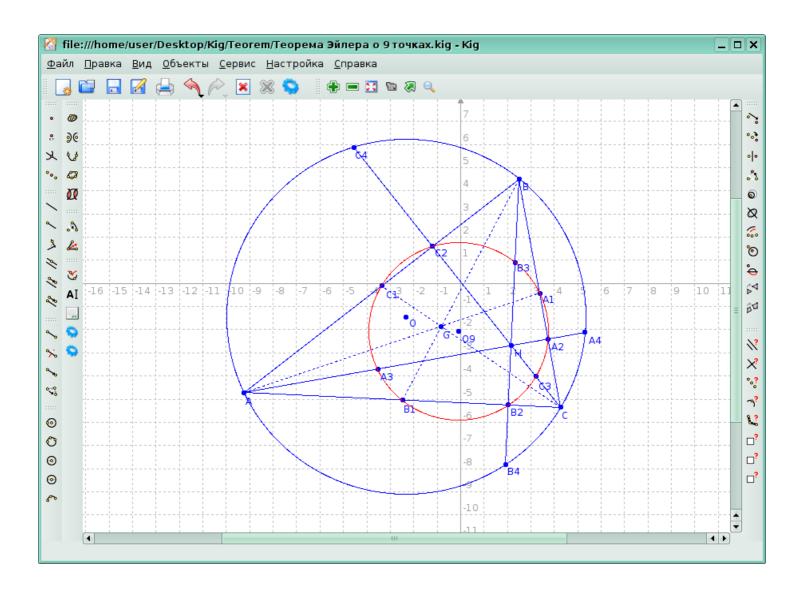




Окружность 9 точек

Теорема.

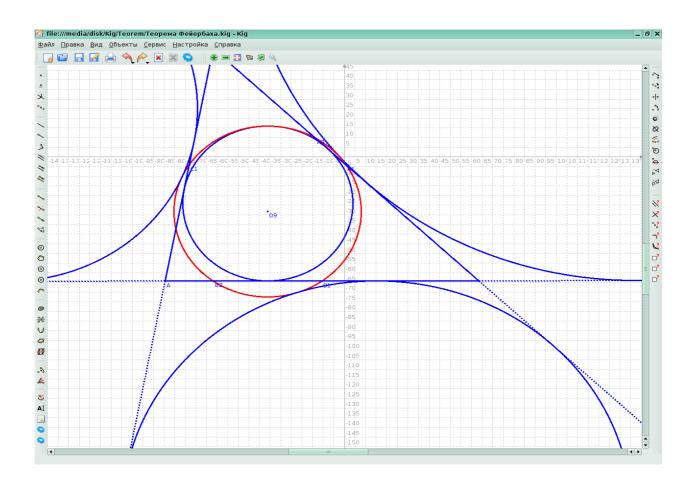
Середины сторон треугольника, основания высот и середины отрезков, соединяющих точку пересечения высот с вершинами, лежат на одной окружности (окружности девяти точек).



Теорема Фейербаха

Теорема.

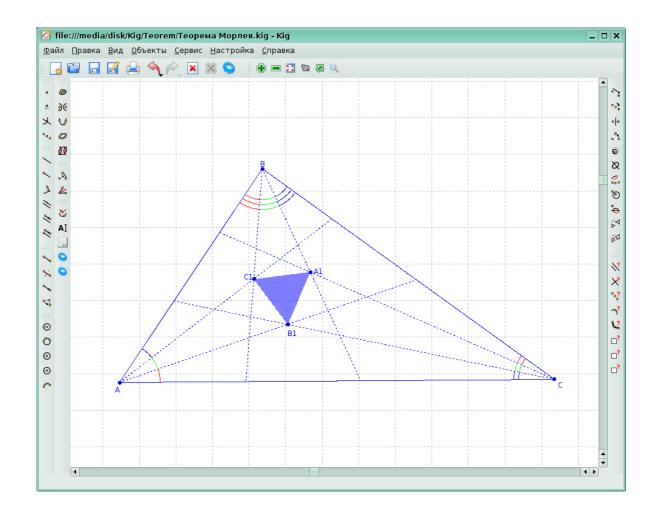
Окружность девяти точек произвольного треугольника касается вписанной и всех вневписанных окружностей этого треугольника.



Теорема Морлея

Теорема.

Точки пересечения смежных трисектрис углов произвольного треугольника являются вершинами равностороннего треугольника.



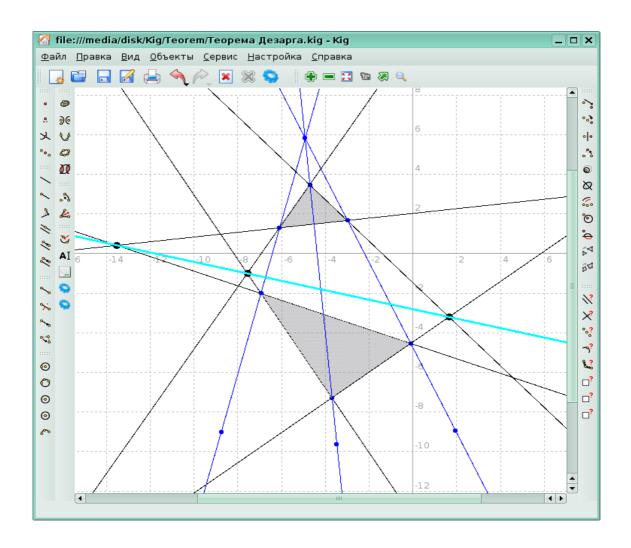
Теорема Дезарга

Прямая теорема.

Если два треугольника расположены на плоскости таким образом, что прямые, соединяющие соответственные вершины треугольников, проходят через одну точку, то три точки, в которых пересекаются продолжения трёх пар соответственных сторон треугольников, лежат на одной прямой.

Обратная теорема.

Если два треугольника расположены на плоскости таким образом, что три точки, в которых пересекаются продолжения трёх пар соответственных сторон треугольников, лежат на одной прямой, то прямые, соединяющие соответственные вершины треугольников, проходят через одну точку.



Краткие итоги

Программа «Интерактивная геометрия (Kig)» - достаточно интересный и полезный программный продукт, который можно применять на многих уроках планиметрии.

Однако он требует серьезной «доводки», поскольку многие необходимые построения не автоматизированы. В процессе работы мне пришлось сделать некоторое количество макротипов, и теперь построение нужной конфигурации заметно убыстряется.

При разработке элективного курса «Знаменитые теоремы планиметрии» были выполнены интерактивные чертежи с использованием этой программы.

Аналогом данной программы в среде Windows являются «Живая геометрия» и 1С-Конструктор. Первая имеет схожий функционал с Kig, преимущество второй выражается в том, что она умеет работать с пространственными объектами.

К достоинствам же программы «Интерактивная геометрия» можно отнести возможность написания на языке Python собственных макротипов.